Artificial Intelligence and Machine Learning

Paper Code: 
25CBDA311
Credits: 
03
Periods/week: 
03
Max. Marks: 
100.00
Objective: 

The objective of course is to:

1.   Introduce students to basic  applications, concepts, and  techniques of machine learning.

2.   Develop   skills  in  students  to  implement  machine  learning  algorithms  on  real  world problems and  evaluate their  performance.

 

Course Outcomes: 

Course

Learning outcome

(at course level)

Learning and teaching strategies

Assessment

Strategies

Course

Code

Course

Title

CO127. Formulate a problem for data analytics and  analyse data and  select suitable machine learning   technique for   designing   a model.

CO128.  Develop    a machine         learning model   for  unlabelled data                 using association rules. CO129.   Design     a machine         learning model  for  data using clustering

techniques.

CO130 Analyse   and implement    different classification techniques.

CO131. Analyse  and compare different prediction

techniques.

CO132     Contribute effectively                 in course-specific interaction

Approach in teaching: Interactive Lectures, Group Discussion, Case Study, Demonstration

 

Learning activities for the students: Self-learning assignments, Exercises related with Machine Learning algorithm, presentations

     Class test

     Semester end examination

      Quiz

     Practical

Assignments

     Presentation

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

25CBDA

311

 

 

 

 

 

 

 

 

 

 

 

 

 

Artificial Intelligence and

Machine Learning (Theory)

 

9.00
Unit I: 

Introduction  to  Data  Mining and  machine  learning:  Basic   Data   Mining  Tasks, Data   Mining   versus   Knowledge  Discovery     in    Databases,    Applications  of    Machine Learning,   Machine    Learning   vs   AI,   Types    of   Machine    Learning,   Metrics,    Accuracy Measures: Precision, recall,  F-measure, confusion matrix, cross-validation.

 

9.00
Unit II: 

Unsupervised    Learning:   Understand  the     Problem   by    Understanding   the  Data, unbalanced  data,   Association rules,  Apriori   algorithm,  FP   tree   algorithm,  and  their implementation in Python, Market  Basket  Analysis and  Association Analysis.

 

9.00
Unit III: 

Clustering:  k-means and   implementation  of  k-means  using   python,  Concept  of other clustering  algorithms:  Expectation  Maximization   (M)  algorithm,  Hierarchical clustering, and  DBSCAN.

 

9.00

Classification  &   Prediction:  model    Construction,  performance,   attribute selection Issues:   under,  Over-fitting, cross    validation,  tree   pruning  methods, missing  values, Information   Gain,    Gain    Ratio,    Gini   Index,  continuous  classes.  Classification and Regression Trees (CART) and  C 5.0., implementation of decision tree in python

 

9.00

Classification & Prediction: Linear  Regression, Multiple  Linear  Regression, Logistic Regression,  Naïve   Bayes   and   Support  Vector  Machines(SVM), Implementation  of  Linear Regression, Logistic Regression, Naïve Bayes  and  SVM in python.

 

ESSENTIAL READINGS: 

1.  Jiawei   Han   &  Micheline   Kamber,   “Data   Mining:   Concepts  &  Techniques”,   Morgan Kaufmann Publishers, Third Edition.

2.  Sebastian Raschka & Vahid Mirjalili,” Python Machine  Learning”, Second Edition,Packt>.

3.  McKinney, Python for Data Analysis. O’ Reilly Publication,2017.

 

REFERENCES: 

SUGGESTED READINGS:

1.  Miller, Curtis.  Hands-On Data  Analysis with NumPy and  Pandas: Implement Python Packages from  Data  Manipulation to Processing. United  Kingdom: Packt Publishing, 2018. (Latest editions of the  above books  are  to be  referred)

e RESOURCES:

1.  https://www.jigsawacademy.com/blogs/business-analytics/

2.  NOC: Python for Data  Science, IIT Madras  ,https://nptel.ac.in/courses/106106212

3.  Python, w3scool, https://www.w3schools.com/

4.  Jupiter :www.jupiter.com

5.  Googlecolab: www.googlecolab.com

JOURNALS:

1. Journal of Machine  Learning Research (JMLR),ACM, https://dl.acm.org/journal/jmlr

2.  International Journal of Machine  Learning and  Cybernetics, springer :https://www.springer.com/journal/13042

 

Academic Year: