Computer Vision and IoT

Paper Code: 
25DBDA511A
Credits: 
03
Periods/week: 
03
Max. Marks: 
100.00
Objective: 

This course will enable students to

1.   Explore  the  concepts of computer vision and  image processing

2.   Understand about the  sensors and  IOT based systems.

 

Course Outcomes: 

Course

Learning outcome

(at course level)

Learning and teaching strategies

Assessment

Strategies

Course

Code

Course

Title

CO295.       Analyse image         formation and        manipulation techniques               in computer vision. CO296.  Implement basic                  image processing operations.

CO297.          Apply advanced

techniques    to address image processing and recognition

problems.

CO298. Analyse  IoT adoption,    patterns, challenges,           and solution anatomy. CO299.       Identify different     kinds     of sensors   and     their characteristics    with respect  to   real   life problems. CO300.Contribute effectively in course- specific  interaction

Approach in teaching:Interactive Lectures, Discussion, Reading assignments,Demonstration.

 

Learning activities for the students: Self learning assignments,

Effective  questions, Seminar

presentation.

Class test, Semester end examinations, Quiz, Practical Assignments, Presentation.

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

25DBDA

511A

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Computer Vision and IoT (Theory)

 

9.00
Unit I: 

Introduction to computer vision: Image  Processing VS  Computer  Vision  ,  Problems  in Computer    Vision   Introduction    to     images    .How     images    are     formed,   Image    as     a Matrix     ,Manipulating     Pixels,      Displaying      and      Saving      an      Image     ,Display      Utility Functions  ,Color  Image ,Image Channels ,Splitting   and  Merging  Channels  ,Manipulating Color pixels ,Images with Alpha Channel.

 

9.00
Unit II: 

Basic image  operations  and  annotation:  Basic   image  operations  (creating,  cropping, resizing images, creating image masks). Mathematical  operations     on     images.    Datatype    Conversion,    Contrast    Enhancement, Brightness  Enhancement. Image  Annotation.  Draw   a   line   over   an   image,  Draw   a   Circle   over   an   image,  Draw   a Rectangle over  an  image,  Draw an  Ellipse over  an  image ,Draw  text  over  an  image.

9.00
Unit III: 

Image   Processing:  point    operators,   linear    filtering,    neighbourhood   operators,   fourier transforms, segmentation.  Feature Detection and  Matching   –  points   and  patches, edges, lines, Feature-based Alignment   –  2D,  3D  feature-based  alignment, pose  estimation. Recognition   – object   detection,   face     recognition,   instance   recognition,   category recognition.

 

9.00
Unit IV: 

Introduction to Internet of  things: IoT global  adoption, IoT common Patterns. sensor, data, analytics,  IoT   challenges.  security  and   scalability,  Resources.IoT   Application   Domains.   IoT Solution   Anatomy   –  Device  and   Networks. IoT  Solution   Architecture, Physical   Layer  (Devices, Hardware,  Sensors),  Communication layer  (IoT  networks), Resources IoT  Solution   Anatomy   – IoT Data  Platform. IoT Platform Layer,  Data  Analytics  and  applications Layer,  Resources.

 

9.00
Unit V: 

Industrial    sensors:    Description &    Characteristics–First   Generation    –    Description    & Characteristics–    Advanced    Generation    –    Description    &    Characteristics–Integrated     IoT Sensors  –   Description  &  Characteristics–Polytronics  Systems  –   Description  & Characteristics–Sensors' Swarm  – Description & Characteristics.

 

ESSENTIAL READINGS: 

1.   Lakhwani, Kamlesh, Hemant Kumar Gianey,  Joseph Kofi Wireko,  and  Kamal Kant Hiran.Internet of Things  (IoT): Principles, paradigms and  applications of IoT.  Bpb Publications, 2020.

2.   Szeliski,  Richard. Computer vision: algorithms and  applications. Springer Nature, 2022.

 

REFERENCES: 

SUGGESTED READINGS:

1.   Kaehler, Adrian,  and  Gary Bradski.  Learning OpenCV 3: computer vision in C++ with the  OpenCV library.  " O'Reilly Media,  Inc.",  2016.

2.   Misra, Sudip,  Chandana Roy, and  Anandarup Mukherjee. Introduction to industrial internet of things and  industry 4.0.  CRC Press, 2021.

e RESOURCES

1.    NPTEL: Deep  Learning for Computer Vision, IIT Hyderabad:

https://nptel.ac.in/courses/106106224

2.    Image processing by Saikiran  Panjala, Slideshare:

https://www.slideshare.net/MadhushreeGhosh3/image-processing-76619758

JOURNALS

1.    Journal of Real-Time Image Processing (JRTIP)  springer:

https://www.springer.com/journal/11554

2.    IEEE Transactions on Image Processing:

https://ieeexplore.ieee.org/xpl/RecentIssue.jsp?punumber=83

 

Academic Year: