Data Visualization

Paper Code: 
25CBDA514
Credits: 
03
Periods/week: 
06
Max. Marks: 
100.00
Objective: 

This course will enable students to

1. Understand the  interfaces of power BI and  Tableau.

2. Learn  to design reports and  dashboards for data visualisation.

 

Course Outcomes: 

Course

Learning outcome

(at course level)

Learning and teaching strategies

Assessment

Strategies

Course

Code

Course

Title

CO289.  Identify   the basic       features     of power BI & tableau. CO290.  Simplify  and transform  data   from different sources. CO291. Design   story board  and   dashboard for     real      life     case studies.

CO292.  Create   data visualization              for interdisciplinary problems   using   static and  dynamic charts. CO293.           Design dashboards  based  on KPIs           of            the organization. CO294.Contribute effectively   in   course- specific  interaction

Approach in teaching:

 

Interactive Lectures, Discussion, Demonstration.

 

Learning activities for the students:

 

Self-learning assignments, Practical questions.

Class test, Semester end examinations, Quiz, Practical Assignments, Presentation.

 

 

 

 

 

 

 

 

 

 

 

 

25CBDA 514

 

 

 

 

 

 

 

 

 

Data

Visualization

(Practical)

 

Unit I: 

Power BI

Power  BI ecosystem. its relationship with  Excel,  Power  BI suite  of products, integration of Power   BI  products  and   analytics  process  flow.  Differentiate between  the   various  data sources  Connect Power   BI  to  a  data  source, Clean  and   transform data  to  ensure data quality, Load the  data to the  Power  BI Data  Model.

 

Unit II: 

CAX in Power BI

Introduction to DAX, apply  DAX basics  in Power  BI Desktop, Define  DAX formulas, its applications, its syntax rules  Create basic  calculated columns and  measures, Row and  Filter Context Apply common DAX expressions such  as FILTER, SUM

Page  Backgrounds and  Templates, create visualizations to display  the  data, apply  drill through and  drill down, create and  manage slicers  with the  use  of filters.  explore visual interactions, Publish  the  report to the  Power  BI Service

 

Unit III: 

Tableau and Basic Data Analysis in Tableau

Introduction  to  Tableau,  Evaluation  of  Tableau, Tableau  Architecture  and   Installation  of Tableau. Data  analysis and  data communication with Tableau. Tableau public  and  desktop. Knowing   Your   Data,  importing   data,  the    “Data    Visualization    Process”,   table    view, Dashboard, Tableau Basics.  Dimensions, Measures, Tableau Workspace, cards and  shelves, marks card, formatting how to analyze structured data using  Tableau, exporting data

 

Unit IV: 

Creating Static Charts in Tableau

How to create simple  static  charts in Tableau , selecting appropriate chart, bar  charts, line charts, bubble charts, scatter charts ,tree maps, stacked bar  charts, bulleted charts and histogram  Visualizing  locations  and  time  ,How  to  save  and  publish   your  data in  Tableau

,How  to  export charts from  Tableau  for  use  in PowerPoint  and  Word,  reshape data using

Tableau. Preparing elevator pitch.

 

Unit V: 

Creating Dynamic Charts in Tableau.

“Measure  Names”   and   “Measure  Values”  in  Tableau,  Measures  .sum, average, median, minimum  ,maximum,  standard  deviation  and   variance,  removing  outliers,   Filters   and groups, data  hierarchies,  trend lines,   box  plot  and   regression.  Calculations  in  Tableau, blending and  aggregation level calculations, enabling flexibility in KPI. Creating Maps.  point maps, shape maps and  customize boundary maps.

 

ESSENTIAL READINGS: 

1.   Cole Nussbaumer Knaflic, ”Storytelling with Data. A Data  Visualization  Guide for

Business Professionals”, Wiley,2015.

2.   Daniel G. Murray   ,"Tableau Your Data!. Fast  and  Easy Visual Analysis with

Tableau Software", Wiley,2016.

3.   Nathan Yau," Data  Points", Wiley,2013.

4.   Lindy Ryan,"Visual  Data  Storytelling with Tableau ", Pearson Addison-Wesley

Data  & Analytics,2018.

5.   Jose  Berengueres   , Ali Fenwick  and   Marybeth Sandell  ,"Introduction to Data Visualization  & Storytelling. A Guide  For The  Data  Scientist " , Stokes-Hamilton (29  July 2019)

 

REFERENCES: 

SUGGESTED READINGS:

1.   Lindy Ryan,"Visual  Data  Storytelling with Tableau ", Pearson Addison-Wesley

Data  & Analytics,2018.

2.  Jose  Berengueres   , Ali Fenwick  and   Marybeth Sandell  ,"Introduction to Data Visualization  & Storytelling. A Guide  For The  Data  Scientist " , Stokes-Hamilton (29  July 2019)

e RESOURCES

1.    Tableau official website tutorials:https.//www.tableau.com/

2.    My Great  Learning Courses on data visualization

:https.//www.mygreatlearning.com/academy/learn-for-free/courses/data- visualization-using-tableau

JOURNALS

1.    International Journal of Data  Mining, Modelling and  Management, Inderscience: https://www.inderscience.com/jhome.php?jcode=ijdmmm

2.    Data  Mining and  Knowledge Discovery, Springer :https://www.springer.com/journal/10618

 

Academic Year: