Probability Distributions

Paper Code: 
25GBDA201
Credits: 
04
Periods/week: 
04
Max. Marks: 
100.00
Objective: 

This module enables students to

1.   Understand Random Variable  Concepts.

2.   Learn  Fundamental of Probability Distribution.

 

Course Outcomes: 

Course

Learning outcome

(at course level)

Learning and teaching strategies

Assessment

Strategies

Course

Code

Course

Title

 

 

 

 

 

 

 

 

 

 

 

 

 

25GBDA

201

 

 

 

 

 

 

 

 

 

 

 

 

Probability Distributions (Theory)

CO85. Create random variables and  apply their  functions in real world  scenario.

CO86. Infer  the expectations for random variable functions.

CO87. Compute the moments and characteristic functions of distributions.

CO88. Identify the behaviour of the population. CO89.Analyse    the behaviour   of  the   dat by  fitting   discrete   an continuous

distributions.

CO90.Contribute effectively    in    course- specific  interaction

Approach in teaching: Interactive Lectures, Discussion, Reading assignments, Demonstration.

 

Learning activities for the students: Self learning assignments, Effective questions,

a Seminar

d presentation.

Class test, Semester end examinations, Quiz, Assignments, Presentations, Individual and group projects and  peer reviews

 

12.00
Unit I: 
Random Variable:

Definition    and    types   of    random  variables.  Probability mass function  and   Probability density  function.  Distribution function  with  properties  (without proof). Joint,   Marginal     and     Conditional   probability   distributions.   Independence    of two             variables,  definition and   application  of  Jacobian transformation  for  one   and   two variables.

 

12.00
Unit II: 
Expectation:

Expectation of  a  random  variable and   its  simple   properties.  Addition and  Multiplication   theorems  of  Expectations.  Variance   and   covariance  and   their properties.

Central  moments and  Non-central  moments and  their  computation from  data. Measure  of Skewness and  Kurtosis.

12.00
Unit III: 
Cumulant generating functions:

Chebychev’s  inequality  with  simple   applications.  Moment  generating functions  and   their properties.  Cumulant  generating  functions.  Characteristic  function  and   their   properties (without proof)

 

12.00
Unit IV: 
Probability Distribution-I:

Binomial,  Poisson, Geometric Distribution with simple properties and  applications.

 

12.00
Unit V: 
Probability Distribution-II:Uniform Distribution

Normal    Distribution,   Properties  of Normal  Curve,  and  Exponential Distribution with properties.

 

ESSENTIAL READINGS: 

1.   Goon,  A.M., Gupta, M.K. and  Gupta, B. Das (1991): Outline  of Statistics, Volume  I, The World Press  PvtLtd , Calcutta

2.   Gupta, S.C. and  Kapoor  ,V.K.: (2000) Fundamentals of Mathematical Statistics, S Chand & Company, New Delhi

3.   Gupta, O.P.:Mathematical Statistics, Kedarnath Publication, Meerut.

4.   Mood Alexander M., GraybillFrankline and  Boes Duane C.:(2007) Introduction to Theory of Statistics, McGraw Hill & Company Third Edition

 

REFERENCES: 

SUGGESTED READINGS:

1.   Paul Mayor L. (1970): Introductory Probability and  Statistical Application, Oxford & IBM Publishing Company Pvt Ltd, Second Edition.

2.   Yule Udny G., and  Kendall,M.G.  (1999): An Introduction to the  theory of Statistics,14th Edition

3.   Speigel  M.R., (1967): Theory  and  Problem of Statistics, Schaum’s Series.

4.   Johnson Norman L., Kotz Samuel and  Kemp Adriene  W.: (2005) Univariate Discrete

Distributions, Second Edition.

5.   Kingman, J.F. & Taylor,  S.J.  (1996): Introduction to Measure and  Probability, Cambridge Univ. Press.

6.   Johnson, S. and  Kotz. (1972): Distribution in Statistics, Vol.I, II. And III,  Houghton and Muffin.

e-RESOURCES:

1.   Probability, Academia: https://www.academia.edu/39708554/Probability_and_Statistics_for_Data Science

2.   Probability ,slide  share:  https://www.slideshare.net/ferdinjoe/probability-theory-for- data-scientists-193754474?from_search=0

JOURNALS:

1.   Journal of Machine  Learning Research (JMLR),ACM, https://dl.acm.org/journal/jmlr

 

Academic Year: