Text Mining Lab

Paper Code: 
25DBDA512B
Credits: 
03
Periods/week: 
06
Max. Marks: 
100.00
Objective: 

This Course enables the students to

1    Acquaint  students with text  mining  through Python.

2    Analyze data with different text  mining  methods.

 

Course Outcomes: 

Course

Learning outcome

(at course level)

Learning and teaching strategies

Assessment

Strategies

Course

Code

Course

Title

 

 

 

 

 

 

 

 

 

 

 

 

 

25DBDA

512 B

 

 

 

 

 

 

 

 

 

 

Text Mining Lab

(Practical)

CO313. Assess  big data principles      and       their applications      for      text data management. CO314.       Investigate the    necessity   of    text data     mining       across diverse problems. CO315. Formulate  data mining             challenges, access    datasets,    and implement solutions. CO316.Perform preprocessing  clustering and      classification     on text.

CO317.Evaluate        the performance                of classification models. CO318.Contribute effectively     in    course- specific  interaction

Approach            in teaching: Interactive

Lectures, Discussion,

 

Demonstration,

 

Learning activities for the students:

 

Self-learning assignments, Practical  questions

 Assignment

  Classroom activity

 Multiple choice questions

 Semester End Examination

  Individual and group projects

 

Exercises given  will be covering entire syllabi as follows.

1.   Big data applications

2.   Preparation of datasets for text  mining

3.   Exercises related to text  representation

4.   Exercises related to preprocess text  data

5.   Exercises related to text  clustering

6.   Exercises related to text  classification

7.   Case  Studies

 

ESSENTIAL READINGS: 

1.   Big Data, Black Book, DT Editorial  Services, DreamTech Press  2015

2.   Text  Mining with Machine  Learning. Principles  and  Techniques 1st  Edition,  CRC Press;

1st  edition  (November 11,  2019)

 

REFERENCES: 

SUGGESTED READINGS:

1.  Text  Data  Mining Springer; 1st  ed.  2021  edition  (May 23,  2021)

e RESOURCES

     1. NOC:Business Analytics  & Text  Mining Modeling  Using Python, IIT                      Roorkee:https://nptel.ac.in/courses/110107129

2. Datascience.com,textmining:https.//towardsdatascience.com/text-representation-for- data-science-and-text-mining-719ce81f3c84

JOURNALS

1.    Text  and  Data  Mining, Elsevier: https://www.elsevier.com/open-science/research- data/text-and-data-mining

 

Academic Year: