Statistical Inference and Sampling

Paper Code: 
25CBDA316
Credits: 
03
Periods/week: 
03
Max. Marks: 
100.00
Objective: 

The course will enable the students to

1. Understand the  concepts of statistical inference.

2.   Learn  the  concepts of sampling.

 

Course Outcomes: 

Course

Learning Outcome

(at course level)

Learning and teaching strategies

Assessment

Strategies

Course

Code

Course

Title

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

25CBDA

316

 

 

 

 

 

 

 

 

 

 

 

 

Statistical Inference and Sampling (Theory)

CO157.                Analyse properties         of         good estimators      and       apply fundamental   principles  of statistical inference. CO158.    Perform   point estimation     and     interval estimation  under a variety of discrete and  continuous probability models. CO159.       Apply        the applications    of   sampling distributions   to   the   real- world  problems.

CO160. Construct hypothesis test about population mean and proportion.

CO161.     Analyse       and conduct   sample    surveys by   using    an   appropriate Sampling Technique. CO162.Contribute effectively       in      course- specific  interaction

Approach in teaching: Interactive Lectures, Group Discussion, Case Study

 

Learning activities for the students:

Self-learning assignments, Machine  Learning exercises, presentations

Class test, Semester end examinations, Quiz, Practical Assignments, Presentation

 

9.00
Unit I: 

Point estimation   and   Interval  Estimation:Point  estimation    and      IntervalEstimation, properties  of  a  good   point   estimator-  unbiasedness,  consistency,  efficiency & sufficiency.-factorization theorem (without proof)  and  its applications.

 

9.00
Unit II: 

Maximum Likelihood and  its  properties:  Method   of  Maximum   Likelihood   and  its properties                         of    MLEs   (without    proof).    Confidence   interval,    confidence coefficient, construction of confidence interval for population mean, variance, difference of population mean when standard deviation are  known  and  unknown of Normal  Distribution.

 

9.00
Unit III: 

HypothesisTesting:

Hypothesis  and   procedure  of  testing.  Applications of  Chi-square test,  t-test  and   F  – test. ANOVA: one  way and  two way

 

 

9.00
Unit IV: 

Central  limit theorem  and Sampling: Central   limit  theorem.  Sampling for attributes and  variables, tests  of  significance for  single   mean,  standard  deviation and  proportions, tests of    significance   for    difference   between   two    means,   standard deviations  and proportions for large  samples.

 

9.00
Unit V: 

Concept  of   Sampling  Design:  Principles    of   Sample   survey,   Probability  and  Non- Probability Sampling,  Concept  of  Sampling Design   Method   of  drawing a  random sample from  a finite  population, accuracy and  precision of an  estimator. Estimation of sample size for a specified precision

 

ESSENTIAL READINGS: 

1.   Goon,  A.M., Gupta, M.K. and  Dasgupta, B. Das (1991): An Outline  of Statistics, Volume II, The  World Press  Pvt Ltd, Calcutta

2.   Gupta, S.C. and  Kapoor,  V.K.(2000): Fundamentals of Mathematical Statistics, S Chand & Company, New Delhi, tenth edition.

3.   Mood Alexander M., Graybill Frankline  and  Boes Duane C.(2007): Introduction to Theory  of Statistics, Mc Graw Hill & Company Third Edition.

 

REFERENCES: 

SUGGESTED READINGS:

1.   Rohatgi, V.K.(2009): An Introduction to Probability Theory  and  Statistics, John  Wiley

And Sons.

2.   Casella,  G. and  Berger, Roger  L.(2002): Statistical Inference, Duxbury  Thompson

Learning, Second Edition.

3.   Snedecor, G.W. and  Cochran, W.G. (1967): Statistical Methods, Iowa  State University

Press.

4.   Rao,  C. R. (2002): Linear  Statistical Inference and  its Applications, Willey- Blackwell

5.   Kiefer JC. (1987):  Introduction to Statistical Inference. Springer.

 

e-RESOURCES:

1. https://epgp.inflibnet.ac.in/

2. https://www.academia.edu/

3.   https://www.slideshare.net/

 

JOURNALS:

1.  https://www.sciencegate.app/keyword/445436

 

Academic Year: